Skip to main content

Reprogramming cells for kidney repair

Mar. 14, 2019, 10:45 AM

by Kelsey Herbers

Chronic kidney disease is on the rise worldwide. Approaches to develop regenerative or cellular therapies are hindered by the complex cellular structure of the kidney, which is composed of about 1 million microscopic “filters” called nephrons.

Lauren Woodard, PhD, and Matthew Wilson, MD, PhD, at Vanderbilt, in collaboration with Jessica Vanslambrouck, PhD, and Melissa Little, PhD, at Murdoch Children’s Research Institute, among other colleagues, have discovered a way to reprogram adult human kidney cells into induced nephron progenitor-like cells similar to those that form in the kidney during embryonic development. The researchers used a piggyBac transposon to express three transcription factors (SNAI2, EYA1, SIX1) for reprogramming.

The resulting induced nephron progenitor-like cells contributed to the formation of new nephrons in vitro, ex vivo (in a kidney “organoid” derived from induced pluripotent stem cells) and in vivo (in developing mouse kidneys). The direct reprogramming technique, reported in Kidney International, could lead to novel therapies for kidney disease.

This research was supported in part by the National Institutes of Health (grants DK060445, DK114809, DK093660), the Department of Veterans Affairs, a fellowship from Dr. and Mrs. Harold Seltzman, and the Vanderbilt Center for Kidney Disease.

Recent Stories from VUMC News and Communications Publications

The first few minutes of Charlie’s life were a blur, as a team of doctors and nurses at VUMC worked to resuscitate him and stabilize his heart rate. He was then transferred to the Neonatal Intensive Care Unit at Monroe Carell Jr. Children’s Hospital at Vanderbilt.

Hope

The first few minutes of Charlie’s life were a blur, as a team of doctors and nurses at VUMC worked to resuscitate him and stabilize his heart rate. He was then transferred to the Neonatal Intensive Care Unit at Monroe Carell Jr. Children’s Hospital at Vanderbilt.

Tucked away in a Vanderbilt conference room, 36 adults huddle over Lego pieces. Eleven teams have been assigned to assemble multicolored Legos using the written directions included in the packet. The result should be a Frankenstein figure.

Vanderbilt Nurse

Tucked away in a Vanderbilt conference room, 36 adults huddle over Lego pieces. Eleven teams have been assigned to assemble multicolored Legos using the written directions included in the packet. The result should be a Frankenstein figure.

Marissa Benchea has CF, and she is one of hundreds of thousands of adults not only surviving but thriving with a chronic childhood disease.

Vanderbilt Medicine

Marissa Benchea has CF, and she is one of hundreds of thousands of adults not only surviving but thriving with a chronic childhood disease.

One hundred years ago, multiple “waves” of a deadly flu swept across the world.

Vanderbilt Medicine

One hundred years ago, multiple “waves” of a deadly flu swept across the world.

more