Share: Share on Facebook Share on Bsky Share on X Share on LinkedIn Share via Email Print: Print this article By: Kathy Whitney On Sept. 2, 2015, Vanderbilt leaders joined with the community and patients and families for an expansion celebration. Light microscopy and liquid STEM of fully hydrated wild-type yeast cells. A. Cells are shown within a portion of the viewing window of the microfluidic chamber. B. Cells emit red fluorescence, indicating they are alive. C. Liquid STEM image of the same cells shows details at nanometer resolution, including cell wall (arrow 1), primary and secondary septa (dividing membranes; arrows 2 and 3), lipid droplet (arrow 5) and peroxisome (organelle; arrow 6).Reprinted from Biophysical Journal, Vol. 100, Peckys DB, et. al., “Fully hydrated yeast cells imaged with electron microscopy,” pgs 2522-2529, May 18, 2011, with permission from Elsevier. Light microscopy and liquid STEM of fully hydrated wild-type yeast cells. A. Cells are shown within a portion of the viewing window of the microfluidic chamber. B. Cells emit red fluorescence, indicating they are alive. C. Liquid STEM image of the same cells shows details at nanometer resolution, including cell wall (arrow 1), primary and secondary septa (dividing membranes; arrows 2 and 3), lipid droplet (arrow 5) and peroxisome (organelle; arrow 6). Reprinted from Biophysical Journal, Vol. 100, Peckys DB, et. al., “Fully hydrated yeast cells imaged with electron microscopy,” pgs 2522-2529, May 18, 2011, with permission from Elsevier. Related